• Call +1.858.633.0165 or Fax +1.858.633.0166 or Contact Us

MAPK14 elisa kit :: Human Mitogen Activated Protein Kinase 14 (MAPK14) ELISA Kit

Scan QR to view Datasheet
Catalog # MBS455729
Unit / Price
  48-Strip-Wells  /  $385 +1 FREE 8GB USB
  96-Strip-Wells  /  $515 +1 FREE 8GB USB
  5x96-Strip-Wells  /  $2,325 +2 FREE 8GB USB
  10x96-Strip-Wells  /  $4,515 +5 FREE 8GB USB
Typical Testing Data/Standard Curve (for reference only)
Product Name

Mitogen Activated Protein Kinase 14 (MAPK14), ELISA Kit

Popular Item
Also Known As

Human Mitogen Activated Protein Kinase 14 (MAPK14) ELISA Kit

Product Synonym Names
CSBP1 CSBP2 CSPB1 EXIP Mxi2 PRKM14 PRKM15 RK SAPK2A P38 Mitogen-activated protein kinase p38 alpha Cytokine suppressive anti-inflammatory drug-binding protein
Product Gene Name
Research Use Only
For Research Use Only. Not for use in diagnostic procedures.
Request for Current Manual Insert
Sequence Length
360
OMIM
L35263 mRNA
3D Structure
ModBase 3D Structure for Q16539
Species Reactivity
Samples
Tissue homogenates, cell lysates and other biological fluids.
Assay Type
Sandwich
Detection Range
1.56-100ng/mL
Sensitivity
0.56ng/mL
Intra Assay
CV<10%
Inter Assay
CV<12%
Preparation and Storage
For unopened kit, all reagents should be kept according to the labels on vials. The TMB Substrate, Wash Buffer, Stop Solution should be stored at 4 degree C. All others should be stored at -20 degree C.
ISO Certification
Manufactured in an ISO 9001:2008 Certified Laboratory.
Product Note
Our ELISA Kit assays are dynamic research tools and sometimes they may be updated and improved. If the format of this assay is important to you then please request the current manual or contact our technical support team with a presales inquiry before placing an order. We will confirm the current details of the assay. We cannot guarantee the sample manual posted online is the most current manual.
Other Notes
Small volumes of MAPK14 elisa kit vial(s) may occasionally become entrapped in the seal of the product vial during shipment and storage. If necessary, briefly centrifuge the vial on a tabletop centrifuge to dislodge any liquid in the container`s cap. Certain products may require to ship with dry ice and additional dry ice fee may apply.
Searchable Terms forMAPK14purchase
MBS455729 is a ready-to-use microwell, strip plate ELISA (enzyme-linked immunosorbent assay) Kit for analyzing the presence of the Mitogen Activated Protein Kinase 14 (MAPK14) ELISA Kit target analytes in biological samples. The concentration gradients of the kit standards or positive controls render a theoretical kit detection range in biological research samples containing MAPK14. The ELISA analytical biochemical technique of the MBS455729 kit is based on MAPK14 antibody-MAPK14 antigen interactions (immunosorbency) and an HRP colorimetric detection system to detect MAPK14 antigen targets in samples. The ELISA Kit is designed to detect native, not recombinant, MAPK14. Appropriate sample types may include undiluted body fluids and/or tissue homogenates, secretions. Quality control assays assessing reproducibility identified the intra-assay CV (%) and inter-assay CV(%).

Typical Testing Data/Standard Curve (for reference only) of MAPK14 elisa kit
MAPK14 elisa kit Typical Testing Data/Standard Curve (for reference only) image
Sample Manual Insert of MBS455729. Click to request current manual
NCBI/Uniprot data below describe general gene information for MAPK14. It may not necessarily be applicable to this product.
NCBI GI #
NCBI GeneID
NCBI Accession #
NCBI GenBank Nucleotide #
UniProt Primary Accession #
UniProt Secondary Accession #
UniProt Related Accession #
Molecular Weight
29,388 Da
NCBI Official Full Name
mitogen-activated protein kinase 14 isoform 1
NCBI Official Synonym Full Names
mitogen-activated protein kinase 14
NCBI Official Symbol
MAPK14  [Similar Products]
NCBI Official Synonym Symbols
RK; p38; CSBP; EXIP; Mxi2; CSBP1; CSBP2; CSPB1; PRKM14; PRKM15; SAPK2A; p38ALPHA
  [Similar Products]
NCBI Protein Information
mitogen-activated protein kinase 14
UniProt Protein Name
Mitogen-activated protein kinase 14
UniProt Synonym Protein Names
Cytokine suppressive anti-inflammatory drug-binding protein; CSAID-binding protein; CSBP; MAP kinase MXI2; MAX-interacting protein 2; Mitogen-activated protein kinase p38 alpha; MAP kinase p38 alpha; Stress-activated protein kinase 2a; SAPK2a
UniProt Gene Name
MAPK14  [Similar Products]
UniProt Synonym Gene Names
CSBP; CSBP1; CSBP2; CSPB1; MXI2; SAPK2A; MAP kinase 14; MAPK 14; CSAID-binding protein; CSBP; MAP kinase p38 alpha; SAPK2a  [Similar Products]
NCBI Summary for MAPK14
The protein encoded by this gene is a member of the MAP kinase family. MAP kinases act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. This kinase is activated by various environmental stresses and proinflammatory cytokines. The activation requires its phosphorylation by MAP kinase kinases (MKKs), or its autophosphorylation triggered by the interaction of MAP3K7IP1/TAB1 protein with this kinase. The substrates of this kinase include transcription regulator ATF2, MEF2C, and MAX, cell cycle regulator CDC25B, and tumor suppressor p53, which suggest the roles of this kinase in stress related transcription and cell cycle regulation, as well as in genotoxic stress response. Four alternatively spliced transcript variants of this gene encoding distinct isoforms have been reported. [provided by RefSeq, Jul 2008]
UniProt Comments for MAPK14
Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets. RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1. RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery. On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2. MAPK14 interacts also with casein kinase II, leading to its activation through autophosphorylation and further phosphorylation of TP53/p53. In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF-induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. In a similar way, MAPK14 phosphorylates the ubiquitin ligase SIAH2, regulating its activity towards EGLN3. MAPK14 may also inhibit the lysosomal degradation pathway of autophagy by interfering with the intracellular trafficking of the transmembrane protein ATG9. Another function of MAPK14 is to regulate the endocytosis of membrane receptors by different mechanisms that impinge on the small GTPase RAB5A. In addition, clathrin-mediated EGFR internalization induced by inflammatory cytokines and UV irradiation depends on MAPK14-mediated phosphorylation of EGFR itself as well as of RAB5A effectors. Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane-associated metalloprotease ADAM17. Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Another p38 MAPK substrate is FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A. The p38 MAPKs are emerging as important modulators of gene expression by regulating chromatin modifiers and remodelers. The promoters of several genes involved in the inflammatory response, such as IL6, IL8 and IL12B, display a p38 MAPK-dependent enrichment of histone H3 phosphorylation on 'Ser-10' (H3S10ph) in LPS-stimulated myeloid cells. This phosphorylation enhances the accessibility of the cryptic NF-kappa-B-binding sites marking promoters for increased NF-kappa-B recruitment. Phosphorylates CDC25B and CDC25C which is required for binding to 14-3-3 proteins and leads to initiation of a G2 delay after ultraviolet radiation. Phosphorylates TIAR following DNA damage, releasing TIAR from GADD45A mRNA and preventing mRNA degradation. The p38 MAPKs may also have kinase-independent roles, which are thought to be due to the binding to targets in the absence of phosphorylation. Protein O-Glc-N-acylation catalyzed by the OGT is regulated by MAPK14, and, although OGT does not seem to be phosphorylated by MAPK14, their interaction increases upon MAPK14 activation induced by glucose deprivation. This interaction may regulate OGT activity by recruiting it to specific targets such as neurofilament H, stimulating its O-Glc-N-acylation. Required in mid-fetal development for the growth of embryo-derived blood vessels in the labyrinth layer of the placenta. Also plays an essential role in developmental and stress-induced erythropoiesis, through regulation of EPO gene expression. Isoform MXI2 activation is stimulated by mitogens and oxidative stress and only poorly phosphorylates ELK1 and ATF2. Isoform EXIP may play a role in the early onset of apoptosis. Phosphorylates S100A9 at 'Thr-113'.
Precautions
All of MyBioSource's Products are for scientific laboratory research purposes and are not for diagnostic, therapeutics, prophylactic or in vivo use. Through your purchase, you expressly represent and warrant to MyBioSource that you will properly test and use any Products purchased from MyBioSource in accordance with industry standards. MyBioSource and its authorized distributors reserve the right to refuse to process any order where we reasonably believe that the intended use will fall outside of our acceptable guidelines.
Disclaimer
While every efforts were made to ensure the accuracy of the information provided in this datasheet, MyBioSource will not be liable for any omissions or errors contained herein. MyBioSource reserves the right to make changes to this datasheet at any time without prior notice.

It is the responsibility of the customer to report product performance issues to MyBioSource within 30 days of receipt of the product. Please visit our Terms & Conditions page for more information.
Request a Quote

Please fill out the form below and our representative will get back to you shortly.

MBS000000
Contact Us

Please fill out the form below and our representative will get back to you shortly.

MBS000000