• Call +1.858.633.0165 or Fax +1.858.633.0166 or Contact Us

anti-HSP90AB1 antibody :: Mouse HSP90AB1 Monoclonal Antibody

Scan QR to view Datasheet
Catalog # MBS9602469
Unit / Price
  0.05 mL  /  $235 +1 FREE 8GB USB
  0.1 mL  /  $295 +1 FREE 8GB USB
  0.2 mL  /  $370 +1 FREE 8GB USB
Western Blot (WB)
Product Name

HSP90AB1, Monoclonal Antibody

Popular Item
Also Known As

HSP90AB1 Antibody

Product Synonym Names
90 kda heat shock protein beta HSP90 beta; D6S182; FLJ26984; Heat shock 84 kDa; Heat shock 90kD protein 1, beta; Heat shock 90kDa protein 1 beta; Heat shock protein 90 alpha family class B member 1; Heat shock protein 90 kDa; Heat shock protein 90kDa alpha (cytosolic) class B member 1; Heat shock protein 90kDa alpha family class B member 1; Heat shock protein beta; Heat shock protein HSP 90 beta; Heat shock protein HSP 90-beta; HS90B_HUMAN; HSP 84; HSP 90; HSP 90 b; HSP 90b; HSP84; HSP90 BETA; hsp90ab1; HSP90B; HSPC2; HSPCB
Research Use Only
For Research Use Only. Not for use in diagnostic procedures.
Immunogen Sequence Length
724
3D Structure
ModBase 3D Structure for P08238
Clonality
Monoclonal
Isotype
IgG1
Host
Mouse
Species Reactivity
Human, Mouse, Rat, Monkey
Specificity
HSP90AB1 antibody detects endogenous levels of total HSP90AB1
Purity/Purification
Affinity-Chromatography
Form/Format
Phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol.
Concentration
1mg/ml (lot specific)
Immunogen
Purified recombinant fragment of human HSP90AB1 expressed in E. Coli
Subcellular Location
Cytoplasm. Melanosome. Identified by mass spectrometry in melanosome fractions from stage I to stage IV.
Tissue Specificity
By heat shock.
Preparation and Storage
Store at -20 degree C. Stable for 12 months from date of receipt.
ISO Certification
Manufactured in an ISO 9001:2015 Certified Laboratory.
Supply Chain Verification
Manufactured in a lab with traceable raw materials. Bulk orders can typically be prepared to the customer’s specifications, please inquire.
Other Notes
Small volumes of anti-HSP90AB1 antibody vial(s) may occasionally become entrapped in the seal of the product vial during shipment and storage. If necessary, briefly centrifuge the vial on a tabletop centrifuge to dislodge any liquid in the container`s cap. Certain products may require to ship with dry ice and additional dry ice fee may apply.
Related Product Information for
anti-HSP90AB1 antibody
Function: Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:16478993, PubMed:19696785). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:27295069, PubMed:26991466). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery (PubMed:18239673). Main chaperone that is involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription (PubMed:20353823).
Subunit Structure: Monomer (PubMed:24880080). Homodimer (PubMed:7588731, PubMed:18400751). Forms a complex with CDK6 and CDC37 (PubMed:9482106, PubMed:25486457). Interacts with UNC45A; binding to UNC45A involves 2 UNC45A monomers per HSP90AB1 dimer (PubMed:16478993). Interacts with CHORDC1 (By similarity). Interacts with DNAJC7 (PubMed:18620420). Interacts with FKBP4 (PubMed:15159550). May interact with NWD1 (PubMed:24681825). Interacts with SGTA (PubMed:16580629). Interacts with HSF1 in an ATP-dependent manner. Interacts with MET; the interaction suppresses MET kinase activity. Interacts with ERBB2 in an ATP-dependent manner; the interaction suppresses ERBB2 kinase activity. Interacts with HIF1A, KEAP1 and RHOBTB2 (PubMed:26517842). Interacts with STUB1 and SMAD3 (PubMed:24613385). Interacts with XPO1 and AHSA1 (PubMed:22022502, PubMed:25486457). Interacts with BIRC2 (PubMed:25486457). Interacts with KCNQ4; promotes cell surface expression of KCNQ4 (PubMed:23431407). Interacts with BIRC2; prevents auto-ubiquitination and degradation of its client protein BIRC2 (PubMed:18239673). Interacts with NOS3 (PubMed:23585225). Interacts with AHR; interaction is inhibited by HSP90AB1 phosphorylation on Ser-226 and Ser-255 (PubMed:15581363). Interacts with STIP1 and CDC37; upon SMYD2-dependent methylation (PubMed:24880080). Interacts with JAK2 and PRKCE; promotes functional activation in a heat shock-dependent manner (PubMed:20353823). Interacts with HSP90AA1; interaction is constitutive (PubMed:20353823). HSP90AB1-CDC37 chaperone complex interacts with inactive MAPK7 (via N-terminal half) in resting cells; the interaction is MAP2K5-independent and prevents from ubiquitination and proteasomal degradation (PubMed:23428871). Interacts with CDC25A; prevents heat shock-mediated CDC25A degradation and contributes to cell cycle progression (PubMed:22843495). Interacts with TP53 (via DNA binding domain); suppresses TP53 aggregation and prevents from irreversible thermal inactivation (PubMed:15358771). Interacts with TGFB1 processed form (LAP); inhibits latent TGFB1 activation (PubMed:20599762). Interacts with TRIM8; prevents nucleus translocation of phosphorylated STAT3 and HSP90AB1 (By similarity).
Post-translational Modifications: Ubiquitinated in the presence of STUB1-UBE2D1 complex (in vitro). ISGylated. S-nitrosylated; negatively regulates the ATPase activity. Phosphorylation at Tyr-301 by SRC is induced by lipopolysaccharide (PubMed:23585225). Phosphorylation at Ser-226 and Ser-255 inhibits AHR interaction (PubMed:15581363). Methylated by SMYD2; facilitates dimerization and chaperone complex formation; promotes cancer cell proliferation. Cleaved following oxidative stress resulting in HSP90AB1 protein radicals formation; disrupts the chaperoning function and the degradation of its client proteins.
Similarity: The TPR repeat-binding motif mediates interaction with TPR repeat-containing proteins. Belongs to the heat shock protein 90 family.
Applications Tested/Suitable for anti-HSP90AB1 antibody
Western Blot (WB), Immunohistochemisty (IHC), Immunofluorescence (IF), Immunocytochemistry (ICC), ELISA (EIA), Flow Cytometry (FC/FACS)
Application Notes for anti-HSP90AB1 antibody
ELISA: 1:10000
WB: 1:500-1:2000
IHC: 1:200-1:1000
ICC: 1:200-1:1000
FC/FACS: 1:200-1:400
IF/ICC: 1:100-1:500

Western Blot (WB) of anti-HSP90AB1 antibody
Figure 1: Western blot analysis using HSP90AB1 mouse mAb against Jurkat (1), A431 (2), Hela (3), A549 (4), HEK293 (5), K562 (6), NIH/3T3 (7), PC-12 (8) and Cos7 (9) cell lysate.
anti-HSP90AB1 antibody Western Blot (WB) (WB) image
NCBI/Uniprot data below describe general gene information for HSP90AB1. It may not necessarily be applicable to this product.
NCBI GI #
NCBI GeneID
NCBI Accession #
NCBI GenBank Nucleotide #
UniProt Primary Accession #
UniProt Secondary Accession #
UniProt Related Accession #
Molecular Weight
Observed: 84 kDa
Predicted: 84 kDa
NCBI Official Full Name
heat shock protein HSP 90-beta isoform a
NCBI Official Synonym Full Names
heat shock protein 90 alpha family class B member 1
NCBI Official Symbol
HSP90AB1  [Similar Products]
NCBI Official Synonym Symbols
HSP84; HSPC2; HSPCB; D6S182; HSP90B
  [Similar Products]
NCBI Protein Information
heat shock protein HSP 90-beta
UniProt Protein Name
Heat shock protein HSP 90-beta
UniProt Synonym Protein Names
Heat shock 84 kDa; HSP 84; HSP84
Protein Family
UniProt Gene Name
HSP90AB1  [Similar Products]
UniProt Synonym Gene Names
HSP90B; HSPC2; HSPCB; HSP 90; HSP 84; HSP84  [Similar Products]
NCBI Summary for HSP90AB1
This gene encodes a member of the heat shock protein 90 family; these proteins are involved in signal transduction, protein folding and degradation and morphological evolution. This gene encodes the constitutive form of the cytosolic 90 kDa heat-shock protein and is thought to play a role in gastric apoptosis and inflammation. Alternative splicing results in multiple transcript variants. Pseudogenes have been identified on multiple chromosomes. [provided by RefSeq, Dec 2012]
UniProt Comments for HSP90AB1
Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:16478993, PubMed:19696785). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:27295069, PubMed:26991466). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery (PubMed:18239673). Main chaperone that is involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription (PubMed:20353823).
Product References and Citations for anti-HSP90AB1 antibody
Meng J, Chen S, Lei YY, Han JX, Zhong WL, Wang XR, Liu YR, Gao WF, Zhang Q, Tan Q, Liu HJ, Zhou HG, Sun T, Yang C; Journal: Oncogene. Hsp90beta promotes aggressive vasculogenic mimicry via epithelial-mesenchymal transition in hepatocellular carcinoma.

Precautions
All of MyBioSource's Products are for scientific laboratory research purposes and are not for diagnostic, therapeutics, prophylactic or in vivo use. Through your purchase, you expressly represent and warrant to MyBioSource that you will properly test and use any Products purchased from MyBioSource in accordance with industry standards. MyBioSource and its authorized distributors reserve the right to refuse to process any order where we reasonably believe that the intended use will fall outside of our acceptable guidelines.
Disclaimer
While every efforts were made to ensure the accuracy of the information provided in this datasheet, MyBioSource will not be liable for any omissions or errors contained herein. MyBioSource reserves the right to make changes to this datasheet at any time without prior notice.

It is the responsibility of the customer to report product performance issues to MyBioSource within 30 days of receipt of the product. Please visit our Terms & Conditions page for more information.
Request a Quote

Please fill out the form below and our representative will get back to you shortly.

MBS000000
Contact Us

Please fill out the form below and our representative will get back to you shortly.

MBS000000