• Call +1.858.633.0165 or Fax +1.858.633.0166 or Contact Us

PKBA elisa kit :: Plant Protein Kinase B Alpha (PKBA) ELISA Kit

Scan QR to view Datasheet
Catalog # MBS9374217
Unit / Price Please Inquire
PKBA elisa kit
Product Name

Protein Kinase B Alpha (PKBA), ELISA Kit

Full Product Name

Plant Protein Kinase B Alpha (PKBA) ELISA Kit

Product Gene Name
Research Use Only
For Research Use Only. Not for use in diagnostic procedures.
Request for Current Manual Insert
Species Reactivity
Preparation and Storage
Store all reagents at 2-8 degree C
Product Note
Our ELISA Kit assays are dynamic research tools and sometimes they may be updated and improved. If the format of this assay is important to you then please request the current manual or contact our technical support team with a presales inquiry before placing an order. We will confirm the current details of the assay. We cannot guarantee the sample manual posted online is the most current manual.
Other Notes
Small volumes of PKBA elisa kit vial(s) may occasionally become entrapped in the seal of the product vial during shipment and storage. If necessary, briefly centrifuge the vial on a tabletop centrifuge to dislodge any liquid in the container`s cap. Certain products may require to ship with dry ice and additional dry ice fee may apply.
Searchable Terms forPKBApurchase
MBS9374217 is a ready-to-use microwell, strip-or-full plate ELISA (enzyme-linked immunosorbent assay) Kit for analyzing the presence of the Protein Kinase B Alpha (PKBA) ELISA Kit target analytes in biological samples. The concentration gradients of the kit standards or positive controls render a theoretical kit detection range in biological research samples containing PKBA. The ELISA analytical biochemical technique of the MBS9374217 kit is based on PKBA antibody-PKBA antigen interactions (immunosorbency) and an HRP colorimetric detection system to detect PKBA antigen targets in samples. The ELISA Kit is designed to detect native, not recombinant, PKBA. Appropriate sample types may include undiluted body fluids and/or tissue homogenates, secretions. Quality control assays assessing reproducibility identified the intra-assay CV (%) and inter-assay CV(%).
NCBI/Uniprot data below describe general gene information for PKBA. It may not necessarily be applicable to this product.
NCBI GI #
NCBI GeneID
NCBI Accession #
UniProt Secondary Accession #
UniProt Related Accession #
Molecular Weight
55,707 Da
NCBI Official Full Name
protein kinase B-alpha
NCBI Official Synonym Full Names
thymoma viral proto-oncogene 1
NCBI Official Symbol
NCBI Official Synonym Symbols
Akt; PKB; Rac; PKB/Akt; PKBalpha
  [Similar Products]
NCBI Protein Information
RAC-alpha serine/threonine-protein kinase
UniProt Protein Name
RAC-alpha serine/threonine-protein kinase
UniProt Synonym Protein Names
AKT1 kinase; Protein kinase B; PKB; Protein kinase B alpha; PKB alpha; Proto-oncogene c-Akt; RAC-PK-alpha; Thymoma viral proto-oncogene
UniProt Gene Name
UniProt Synonym Gene Names
Akt; Rac; PKB; PKB alpha  [Similar Products]
UniProt Entry Name
AKT1_MOUSE
NCBI Summary for PKBA
This gene encodes the founding member of the Akt serine-threonine protein kinase gene family that also includes Akt2 and Akt3. This kinase is a major downstream effector of the phosphatidylinositol 3-kinase (PI3K) pathway that mediates the effects of various growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I). It is activated through recruitment to cellular membranes by PI3K lipid products and by phosphorylation by 3-phosphoinositide dependent kinase-1. It then further phosphorylates different downstream proteins in response to various extracellular signals and thus plays a pivotal role in mediating a variety of cellular processes, such as glucose metabolism, glycogen biosynthesis, protein synthesis and turn over, inflammatory response, cell survival (anti-apoptosis) and development. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2009]
UniProt Comments for PKBA
Akt1: an oncogenic AGC kinase that plays a critical role in regulating cell survival and metabolism in many different signaling pathways. Dual phosphorylation is required for its activation. T308 is phosphorylated by PDK1 in the PI3 kinase pathway, and S473 is phosphorylated by mTOR in the mTORC2 pathway. The 'Lys-63'-linked ubiquitination of AKT1 by TRAF6 is important for its translocation to the plasma membrane, phosphorylation, and activation. When Akt is fully phosphorylated it translocates into the nucleus, undergoes 'Lys-48'-polyubiquitination catalyzed by TTC3, leading to its proteosomal degradation. Hyperactive or overexpressed in a number of cancers including breast, prostate, lung, pancreatic, liver, ovarian and colorectal. Over 160 protein substrates are known including many that regulate transcription, metabolism, apoptosis, cell cycle, and growth.

Protein type: Oncoprotein; Protein kinase, Ser/Thr (non-receptor); Kinase, protein; EC 2.7.11.1; Protein kinase, AGC; AGC group; AKT family

Cellular Component: cytoplasm; cytosol; intercellular junction; microtubule cytoskeleton; mitochondrion; nucleus; plasma membrane; protein complex; spindle; vesicle

Molecular Function: ATP binding; enzyme binding; GTPase activating protein binding; identical protein binding; kinase activity; nitric-oxide synthase regulator activity; phosphatidylinositol-3,4,5-triphosphate binding; phosphatidylinositol-3,4-bisphosphate binding; protein binding; protein kinase activity; protein kinase binding; protein kinase C binding; protein phosphatase 2A binding; protein serine/threonine kinase activity; protein serine/threonine/tyrosine kinase activity

Biological Process: activated T cell apoptosis; aging; anagen; apoptotic mitochondrial changes; cell projection organization and biogenesis; cellular response to insulin stimulus; cytoskeleton organization and biogenesis; G1/S-specific positive regulation of cyclin-dependent protein kinase activity; germ cell development; glucose homeostasis; glucose metabolic process; glucose transport; glycogen biosynthetic process; glycogen metabolic process; inflammatory response; insulin receptor signaling pathway; insulin-like growth factor receptor signaling pathway; lipopolysaccharide-mediated signaling pathway; maternal placenta development; myelin maintenance in the peripheral nervous system; negative regulation of apoptosis; negative regulation of autophagy; negative regulation of caspase activity; negative regulation of cell size; negative regulation of fatty acid beta-oxidation; negative regulation of JNK cascade; negative regulation of protein kinase activity; negative regulation of proteolysis; osteoblast differentiation; peptidyl-serine phosphorylation; peptidyl-threonine phosphorylation; phosphorylation; positive regulation of apoptosis; positive regulation of blood vessel endothelial cell migration; positive regulation of cell growth; positive regulation of cellular protein metabolic process; positive regulation of endodeoxyribonuclease activity; positive regulation of endothelial cell proliferation; positive regulation of fat cell differentiation; positive regulation of glucose import; positive regulation of glycogen biosynthetic process; positive regulation of lipid biosynthetic process; positive regulation of nitric oxide biosynthetic process; positive regulation of nitric-oxide synthase activity; positive regulation of peptidyl-serine phosphorylation; positive regulation of proteasomal ubiquitin-dependent protein catabolic process; positive regulation of protein amino acid phosphorylation; positive regulation of transcription factor activity; positive regulation of transcription from RNA polymerase II promoter; positive regulation of vasoconstriction; protein amino acid phosphorylation; protein catabolic process; protein import into nucleus, translocation; protein kinase B signaling cascade; protein ubiquitination; regulation of cell migration; regulation of glycogen biosynthetic process; regulation of myelination; regulation of protein localization; response to DNA damage stimulus; response to food; response to hormone stimulus; response to organic substance; signal transduction; spinal cord development; striated muscle cell differentiation; translation
Precautions
All of MyBioSource's Products are for scientific laboratory research purposes and are not for diagnostic, therapeutics, prophylactic or in vivo use. Through your purchase, you expressly represent and warrant to MyBioSource that you will properly test and use any Products purchased from MyBioSource in accordance with industry standards. MyBioSource and its authorized distributors reserve the right to refuse to process any order where we reasonably believe that the intended use will fall outside of our acceptable guidelines.
Disclaimer
While every efforts were made to ensure the accuracy of the information provided in this datasheet, MyBioSource will not be liable for any omissions or errors contained herein. MyBioSource reserves the right to make changes to this datasheet at any time without prior notice.

It is the responsibility of the customer to report product performance issues to MyBioSource within 30 days of receipt of the product. Please visit our Terms & Conditions page for more information.
Request a Quote

Please fill out the form below and our representative will get back to you shortly.

MBS000000
Contact Us

Please fill out the form below and our representative will get back to you shortly.

MBS000000