• Call +1.858.633.0165 or Fax +1.858.633.0166 or Contact Us

Auxin efflux carrier component

Acts as a component of the auxin efflux carrier. Seems to be involved in the basipetal auxin transport. Mediates the formation of auxin gradient which is required to ensure correct organogenesis. Coordinated polar localization of PIN1 is directly regulated by the vesicle trafficking process and apical-basal PIN1 polarity also depends on the phosphorylation of conserved serine residues by PID kinase. The ARF-GEF protein GNOM is required for the correct recycling of PIN1 between the plasma membrane and endosomal compartments.

Below are the list of possible Auxin efflux carrier component products. If you cannot find the target and/or product is not available in our catalog, please click here to contact us and request the product or submit your request for custom elisa kit production, custom recombinant protein production or custom antibody production. Custom ELISA Kits, Recombinant Proteins and Antibodies can be designed, manufactured and produced according to the reer's specifications.

Auxin efflux carrier component 1

Also known as Auxin efflux carrier component 1 (Protein PIN-FORMED) (AtPIN1).
Encodes an auxin efflux carrier involved in shoot and root development. It is involved in the maintenance of embryonic auxin gradients. Loss of function severely affects organ initiation, pin1 mutants are characterised by an inflorescence meristem that does not initiate any flowers, resulting in the formation of a naked inflorescence stem. PIN1 is involved in the determination of leaf shape by actively promoting development of leaf margin serrations. In roots, the protein mainly resides at the basal end of the vascular cells, but weak signals can be detected in the epidermis and the cortex. Expression levels and polarity of this auxin efflux carrier change during primordium development suggesting that cycles of auxin build-up and depletion accompany, and may direct, different stages of primordium development. PIN1 action on plant development does not strictly require function of PGP1 and PGP19 proteins.

Auxin efflux carrier component 1a

Also known as Auxin efflux carrier component 1a (OsPIN1a) (Auxin efflux carrier component 1) (OsPIN1) (Ethylene-insensitive root 1 homolog) (OsPIN1b).
Acts as a component of the auxin efflux carrier. Seems to be involved in the polar auxin transport which may promote adventitious root emergence and control tillering.

Auxin efflux carrier component 2

Also known as Auxin efflux carrier component 2 (AtPIN2) (Auxin efflux carrier AGR) (Ethylene-insensitive root 1) (AtEIR1) (Polar-auxin-transport efflux component AGR1) (Protein AGRAVITROPIC 1) (AtAGR1) (Protein WAVY 6).
Encodes an auxin efflux carrier that is similar to bacterial membrane transporters. Root-specific role in the transport of auxin. Acts downstream of CTR1 and ethylene biosynthesis, in the same pathway as EIN2 and AUX1, and independent from EIN3 and EIN5/AIN1 pathway. In the root, the protein localizes apically in epidermal and lateral root cap cells and predominantly basally in cortical cells. Functions may be regulated by phosphorylation status. EIR1 expression is induced by brassinolide treatment in the brassinosteroid-insensitive br1 mutant. Gravistimulation resulted in asymmetric PIN2 distribution, with more protein degraded at the upper side of the gravistimulated root. Protein turnover is affected by the proteasome and by endosomal cycling. Plasma membrane-localized PIN proteins mediate a saturable efflux of auxin. PINs mediate auxin efflux from mammalian and yeast cells without needing additional plant-specific factors. The action of PINs in auxin efflux is distinct from PGPs, rate-limiting, specific to auxins and sensitive to auxin transport inhibitors. Membrane sterol composition is essential for the acquisition of PIN2 polarity.

Auxin efflux carrier component 3

Also known as Auxin efflux carrier component 3 (AtPIN3).
A regulator of auxin efflux and involved in differential growth. PIN3 is expressed in gravity-sensing tissues, with PIN3 protein accumulating predominantly at the lateral cell surface. PIN3 localizes to the plasma membrane and to vesicles. In roots, PIN3 is expressed without pronounced polarity in tiers two and three of the columella cells, at the basal side of vascular cells, and to the lateral side of pericycle cells of the elongation zone. PIN3 overexpression inhibits root cell growth. Protein phosphorylation plays a role in regulating PIN3 trafficking to the plasma membrane.

Auxin efflux carrier component 4

Also known as Auxin efflux carrier component 4 (AtPIN4).
Encodes a putative auxin efflux carrier that is localized in developing and mature root meristems. It is involved in the maintenance of embryonic auxin gradients. A role for AtPIN4 in generating a sink for auxin below the quiescent center of the root meristem that is essential for auxin distribution and patterning is proposed. In the root, PIN4 is detected around the quiescent center and cells surrounding it, and localizes basally in provascular cells. PIN4 expression is upregulated in brassinosteroid-insensitive mutant (PMID 16141452).

Auxin efflux carrier component 5

Also known as Auxin efflux carrier component 5 (AtPIN5).
Encodes PIN5, an atypical member of the PIN family. PIN5 is a functional auxin transporter that is required for auxin-mediated development. PIN5 does not have a direct role in cell-to-cell transport but regulates intracellular auxin homeostasis and metabolism. PIN5 localizes, unlike other characterized plasma membrane PIN proteins, to endoplasmic reticulum (ER), presumably mediating auxin flow from the cytosol to the lumen of the ER. It acts together with PIN8 in affecting pollen development and auxin homeostasis.

Auxin efflux carrier component 7

Also known as Auxin efflux carrier component 7 (AtPIN7).
Encodes a novel component of auxin efflux that is located apically in the basal cell and is involved during embryogenesis in setting up the apical-basal axis in the embryo. It is also involved in pattern specification during root development. In roots, it is expressed at lateral and basal membranes of provascular cells in the meristem and elongation zone, whereas in the columella cells it coincides with the PIN3 domain. Plasma membrane-localized PIN proteins mediate a saturable efflux of auxin. PINs mediate auxin efflux from mammalian and yeast cells without needing additional plant-specific factors. The action of PINs in auxin efflux is distinct from PGPs, rate-limiting, specific to auxins and sensitive to auxin transport inhibitors. PINs are directly involved of in catalyzing cellular auxin efflux.

Auxin efflux carrier component 8

Also known as Auxin efflux carrier component 8 (AtPIN8).
Encodes an auxin transporter with a strong expression in a male gametophyte. Mutant studies reveal a role for auxin transport in regulating pollen development and function. It acts together with PIN5.

Go back to Proteins Root Name Listing
Request a Quote

Please fill out the form below and our representative will get back to you shortly.

MBS000000
Contact Us

Please fill out the form below and our representative will get back to you shortly.

MBS000000